Can artificial intelligence be hacked?

Data has powered the artificial intelligence revolution. Now security experts are uncovering worrying ways in which AIs can be hacked to go rogue


Pre-empting criminals attempting to hijack artificial intelligence by tampering with datasets or the physical environment, researchers have turned to adversarial machine learning. 




This is where data has been tweaked to trick a neural network and fool systems into seeing something that isn't there, ignoring what is, or misclassifying objects entirely.


A neural network looks at a picture of a turtle and sees a rifle. A self-driving car blows past a stop sign because a carefully crafted sticker bamboozled its computer vision. An eyeglass frame confuse facial recognition tech into thinking a random dude is actress Milla Jovovich. The hacking of artificial intelligence is an emerging security crisis.




Add an invisible (to humans) layer of data noise onto a photo of a school bus, as Google and New York University researchers did, and a neural network will report back that it's almost perfectly sure that's an ostrich. It's not only images: researchers have tucked hidden voice commands into broadcasts that can control smartphones without our puny human ears being any the wiser.

While such work is now described as an attack, adversarial examples were first seen as an almost philosophical blind spot in neural network design: we had assumed machines see in the same way as we do, that they identified an object using similar criteria to us.

 The idea was first described in 2014 by Google researchers in a paper on "intriguing properties of neural networks" that described how adding a "perturbation" to an image meant the network saw it incorrectly — which they dubbed "adversarial examples". Small distortions, they revealed, could fool a neural network into misreading a number or misclassifying that school bus. 


The work raised questions about the "intrinsic blind spots" of neural networks and the "non intuitive characteristics" in how they learn. In other words, we don't really understand how neural networks operate.

"There is a whole spectrum [of attacks] depending on which phase of the machine-learning model generation pipeline the attacker is sitting at," says Earlence Fernandes, a computer security researcher at the University of Washington, who worked on the stop sign research.



 A training time attack, for example, occurs when the machine-learning model is being built, with malicious data being used to train the system, says Fernandes. "In a face detection algorithm, the attacker could poison the model such that it recognises the attacker’s face as an authorised person," he says.


An inference time attack, on the other hand, is showing specially crafted inputs to the model using a range of algorithms — the Fast Gradient Sign Method or the Carlini and Wagner attack are two popular methods — that subtly alter images to confuse neural networks.

As AI is permeates every facet of our lives — for driving cars, for analysing CCTV systems, for identity via facial recognition — attacks on such systems become all the more likely, and dangerous. Hackers modifying roadside furniture could cause car crashes and injuries. Subtle changes to the data machine learning systems are taught from could also lead to biases being actively added to the decisions AI systems make.

But we shouldn't be worried. Yet. "As far as we know, this type of attack is not being carried out in the real world by malicious parties right now," says Anish Athalye, a researcher at MIT. "But given all the research in this area, it seems that many machine learning systems are very fragile, and I wouldn't be surprised if real-world systems are vulnerable to this kind of attack."

It's not only a technical flaw, but a philosophical assumption. First, machine-learning developers assume that training data and testing data would be similar, when attackers are free to manipulate data to their advantage. And second, we assumed neural networks think like us, when they really don't; the elements a neural network uses to identify a toy turtle is different than what we look for, and that gap is where these attacks live. "Neural nets are extremely crude approximations of the human brain," Fernandes says. "Trying to see them as operating in ways similar to us might not be the best way of thinking about them."


Thank you for reading don't forget to share and comment below.....




Can artificial intelligence be hacked? Can artificial intelligence be hacked? Reviewed by Sumit Tech Bhartiya! on 8:36 PM Rating: 5

No comments:

Powered by Blogger.